Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions

Dawei Guoa,b, Lingying Zhua,b, Zhihai Huanga,b, Haixia Zhouc, Yue Ged, Wenjuan Mad, Jie Wud, Xiuyan Zhangd, Xuefeng Zhoua,b, Yu Zhanga, Yun Zhaod, Ning Gua,b,1, Ning Gua,b,1, Yun Zhaod, Jie Wud, Xiuyan Zhangd, Xuefeng Zhoua,b, Yu Zhanga, Yun Zhaod, Ning Gua,b,1, Ning Gua,b,1

Abstract

Silver nanoparticles (AgNPs) have anti-cancer effect. However, whether and how these particles could inhibit the growth of acute myeloid leukemia (AML) cells is unclear. In the present study, we prepared AgNPs with various sizes and investigated their cytotoxic effect on AML cells. We found that AgNPs could inhibit the viability of AML cells including the isolates from AML patients. AgNPs caused the production of reactive oxygen species (ROS), losses of mitochondrial membrane potential (MMP), DNA damage and apoptosis. Both vitamin C (Vit C) and N-acetyl-L-cysteine (NAC) could completely reverse the generation of ROS upon AgNPs, however only NAC but not Vit C could protect the cells from losses of MMP, DNA damage and apoptosis thoroughly. Similar results were obtained when cells were treated with silver ions alone. As NAC was not only an antioxidant to scavenge ROS but also a silver ion chelator, these data supported the model that both generation of ROS and release of silver ions played critical roles in the AgNPs-induced cytotoxic effect against AML cells. Taken together, this work elucidated the cytotoxic effect of AgNPs on AML cells and their underlying mechanism and might have significant impact on AML treatment.

Keywords

Silver nanoparticles; Acute myeloid leukemia; Cytotoxicity; Reactive oxygen species; Silver ions

Corresponding author. State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, PR China. Tel.: +86 25 83272460; fax: +86 25 83272476.
Corresponding author. Tel.: +86 51 26588089x501; fax: +86 51 265880929.

1 Ning Gu and Yun Zhao are co-senior authors.

Copyright © 2013 Elsevier Ltd. All rights reserved.
Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions